domingo, 7 de noviembre de 2010

punto de inflexion

DEFINICIÓN
El punto que, en una función continua, separa la parte convexa de la cóncava, se llama punto de inflexión de la función. En ellos la función no es cóncava ni convexa sino que hay cambio de concavidad a convexidad o al revés.

Los puntos de inflexión están caracterizados por:

TEOREMA

Sea la ecuación de una función.
Si no existe, y la derivada cambia de signo al pasar por el valor de x=a, entonces, el punto de la función de abscisa x=a es un punto de inflexión.

Clasificación de los puntos de inflexión


Nota
Los puntos de inflexión donde la función es derivable, tienen la característica de tener una recta tangente que cruza la gráfica de f.

Ejemplo:




El punto x=1 es un punto de inflexión, puesto que antes de x=1 la derivada segunda es negativa (convexa) y después de x=1 es positiva (cóncava).
TABLA DE VALORES
X Y
1 -2 P. INFLEXIÓN

opmizacion 2

optimización 2
De todos los triángulos isósceles de 12 m de perímetro, hallar los lados del que tome área máxima.
Triángulo
La función que tenemos que maximizar es el área del triángulo:
Ärea
Relacionamos las variables:
2x + 2y = 12
x = 6 − y
Sustituimos en la función:
Sustitución
Derivamos, igualamos a cero y calculamos las raíces.
Raíces de la derivada
Raíces de la derivada
Realizamos la 2ª derivada y sustituimos por 2, ya que la solución y = 0 la descartamos porque no hay un triángulo cuyo lado sea cero.
Derivada 2ª
Derivada 2ª
Derivada 2ª
Por lo que queda probado que en y = 2 hay un máximo.

La base (2y) mide 4m y los lados oblicuos (x) también miden 4 m, por lo que el triangulo de área máxima sería un triangulo equilatero.

miércoles, 3 de noviembre de 2010

optimizacion 1 ejemplo

Recortando convenientemente en cada esquina de una lámina de cartón de dimensiones 80 cm x 50 cm un cuadrado de lado x y doblando convenientemente (véase figura), se construye una caja. Calcular x para que volumen de dicha caja sea máximo.


Figura
Solución
Solución
Solución
Solución
Solución

maximo y minimo 
Crecimiento y decrecimiento.
Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto:
? Una función f(x) es creciente en un punto a, si su derivada es positiva ? Una función f(x) es decreciente en un punto a, si su derivada es negativa. Es decir,
Si Si
Como Þ ,es decir, la función es creciente en
En este caso Þ , es decir, la función es decreciente en

x = a Estudiar la monotonía de una función es hallar los intervalos en los que es creciente y decreciente.
Se procede de la siguiente forma:
• Se halla la derivada, se iguala a cero y se resuelve la ecuación resultante • Con los puntos en los que se anula la derivada dividimos el dominio en intervalos. • Se estudia el signo de la derivada en un punto cualquiera de cada uno de los intervalos resultantes.
Ejemplo 1.
Halla los intervalos de crecimiento y decrecimiento de la función
Hallamos la derivada: La igualamos a cero y resolvemos la ecuación resultante:
  Þ  
Dividimos el dominio R por los puntos 3 y 1 y obtenemos los intervalos
 ,     y    
Estudiamos el signo de la derivada en un punto cualquiera de cada intervalo: Para x = 0, , es decir, positiva Para x = 2, , es decir, negativa Para x = 4, , positiva
La monotonía de la función queda reflejada en la siguiente tabla: Intervalos (- ∞, 1) (1, 3) (3, +∞) Signo de la derivada + - + Función Þ à Þ
Máximos y mínimos. Son los puntos en que la función cambia de monotonía.
? Si una función derivable presenta un máximo o un mínimo en un punto , entonces
En el punto de abscisa x = c la función pasa de creciente a decreciente
Geométricamente significa que la tangente en el punto x = c es horizontal ? Si y existe la segunda derivada, se verifica:
     Si  , hay un mínimo relativo en el punto c
     Si  , hay un máximo en dicho punto.
Demostración: Lo hacemos para el caso de mínimo: Si la función es creciente en c luego
 Y como  ,   , es decir, la derivada es negativa a la izquierda de c (función decreciente) y positiva a la derecha (función creciente), por tanto, existe mínimo relativo en c.
Para la determinación de máximos y mínimos podemos utilizar los siguientes criterios:
Criterio de la primera derivada:
• Se determinan los intervalos de crecimiento y decrecimiento. • Existe máximo relativo en los puntos en que la función pasa de creciente a decreciente. • Existe mínimo relativo en los puntos en que pasa de decreciente a creciente.
Criterio de la segunda derivada: • Calculamos la primera derivada, la igualamos a cero y resolvemos la ecuación resultante. • Hallamos la segunda derivada. • Las raíces de la ecuación obtenida se sustituyen en la segunda derivada. • Si el resultado obtenido es positivo existe mínimo y si es negativo máximo.
Ejemplo 2.
Halla los máximos y mínimos de la función Hallamos la primera derivada y resolvemos la ecuación :
  Þ   Þ  
2ª derivada:
Valores de la segunda derivada en los puntos obtenidos:
   Þ   $ mínimo para x = - 1
   Þ  $ máximo para x = 1
Concavidad y convexidad.
Los conceptos con convexidad y concavidad son relativos. Adoptaremos el siguiente criterio: La función es convexa en un intervalo si la gráfica de la función queda encima de la recta tangente en un punto cualquiera del intervalo. La función es cóncava cuando la gráfica queda por debajo.
Puntos de inflexión son aquellos en los que la función cambia de convexa a cóncava o de cóncava a convexa.
? Una función derivable es convexa en un intervalo (a, b), si ? Una función derivable es cóncava en un intervalo (a, b), si
Estudiar la curvatura de una función consiste en hallar los intervalos en los que es cóncava y convexa. Se procede de la siguiente forma: • Se halla la segunda derivada, se iguala a cero y se resuelve la ecuación resultante. • Con los puntos en los que se anula la derivada dividimos el dominio en intervalos. • Se estudia el signo de la derivada en un punto cualquiera de cada uno de los intervalos resultantes.
Ejemplo 2. Halla los intervalos de concavidad y convexidad y los puntos de inflexión de la función
Primera derivada: Segunda derivada:
   Þ     Þ  
Dividiendo el dominio R por los puntos –1 y 1 se obtienen los siguientes intervalos:
Estudiamos el signo de la segunda derivada en un punto cualquiera de cada intervalo: Para x = −2 , función convexa. Para x = 0, , función cóncava Para x = 2, , función convexa
La curvatura queda reflejada en la siguiente tabla:
Intervalos (- ∞, −1) (−1, 1) (1, +∞) Signo de la 2ª derivada + - + Función È Ç È Existen puntos de inflexión para x = −1 y para x = 1
Resolución de problemas de optimización.
Son problemas en los que se trata de optimizar una función. Por ejemplo, en una producción obtener los mayores beneficios con los mínimos gastos. Con los datos del problema hay que construir una función que se ha de maximizar o minimizar dentro de las condiciones exigidas.
Ejemplo 3.
De una lámina cuadrada de lado 10 cm. se cortan cuadrados en cada uno de los vértices con el objeto de hacer una caja abierta por arriba. Calcula el lado del cuadrado que se debe cortar para que el volumen de la caja sea máximo.
Volumen de la caja =
  (Función a maximizar)
 ;   
 Þ   ; 
  (mínimo, no se forma caja)
  (máximo).  La solución es 
Ejemplo 4
Un pastor dispone de 1000 metros de tela metálica para construir un cerco rectangular aprovechando una pared ya existente. Halla las dimensiones del cerco a fin de el área encerrada sea máxima.
Perímetro = x + 2y = 1000 Þ x = 1000 – 2y Área = x . y, es decir,
  (Función a maximizar )
 ;    
   Þ  y = 250
Como la segunda derivada es negativa se trata de un máximo.
Las dimensiones serán: 500 metros de largo y 250 de ancho.
Criterio de la segunda derivada
 
Uno de los ordenes de derivación es el de la segunda derivada, aunque no es despreciable la utilización de las derivadas de orden superior, sobre todo en cálculo de errores. Curiosamente las aplicaciones físicas implican, por lo general, derivadas de segundo orden como podría ser las ecuaciones de movimiento.
 
En esta sección presentaremos una interpretación gráfica de los criterios de la segunda derivada que nos servirá para poder obtener los máximos o mínimos de una función. Antes de analizar como es la relación de la segunda derivada conoceremos algunas definiciones:
 
Definición.
Cóncava hacia abajo. Se dice que una función es  cóncava  hacia abajo cuando la primera derivada es  creciente en un intervalo abierto (a,b)
Descripción: http://dieumsnh.qfb.umich.mx/DIFERENCIAL/criter1.jpg

 
Descripción: http://dieumsnh.qfb.umich.mx/DIFERENCIAL/criter3.jpg
 
 
Definición.
Puntos de inflexión y número de inflexión. Sea f una función y a un número. Supongamos que existe números b y c tales que b<a<c  y además:

a)      f es una función continua en el intervalo abierto (b,c)
b)      f es una función cóncava hacia arriba y cóncava hacia abajo en (a,c), o viceversa.
 
Bajo las condiciones anteriores el punto (a,f(a)) se llama punto de inflexión, y al número a se llama número de inflexión.
 
Si la segunda derivada f´´ de una función f es positiva en un intervalo abierto (a,b) es porque la primera derivada es creciente en ese  intervalo.
 
Descripción: http://dieumsnh.qfb.umich.mx/DIFERENCIAL/criter6.jpg
 
Descripción: http://dieumsnh.qfb.umich.mx/DIFERENCIAL/criter6.jpg
 
 
Descripción: http://dieumsnh.qfb.umich.mx/DIFERENCIAL/criter6.jpg
 
 
 
 
Criterios de la segunda derivada para máximos y mínimos relativos
 
 
Sea f una función con su primera derivada definida, al menos, en un intervalo abierto conteniendo al número a. Si f´´ esta definida entonces podemos considerar los siguiente aspectos:
 
a).-  Si f´(a)=0   y     f´´(a)<0 entonces se dice que f tiene un máximo local en a.
b).- Si f´(a)=0    y    f´(a)>0 entonces se dice que f tiene un mínimo local en a.
 
La base del presente criterio radica en observar que los máximos o mínimos locales son consecuencia de observar los siguientes hechos:
 
1.- Cuando la derivada es positiva la función crece.
2.- Cuando la derivada es negativa la función decrece.
3.- Cuando la derivada es cero la función tiene un máximo o un mínimo.
 
Sea f(x) una función y c un número en su dominio. Supongamos que existe a y b  con a<c<b tales que
 
1.-  f es continua en el intervalo abierto (a,b) (de acuerdo con el teorema de Rolle)
2.- f es derivable en el intervalo abierto (a,b), excepto quizá en c;
3.- f´(x) es positiva para todo x<c en el intervalo y negativa para todo x>c en el intervalo.
 
Entonces f tiene un máximo local en c.
 
Nótese que un criterio similar puede tenerse para obtener un mínimo local, solo es necesario intercambiar  “positivo”  por “negativo”.
 
Descripción: http://dieumsnh.qfb.umich.mx/DIFERENCIAL/criter4.jpg

MALLA


OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos


PREGUNTA PROBLEMATIZADORA:
¿cuáles deben ser las dimensiones óptimas para que el costo del material empleado en una lata de cerveza, Coca-Cola o atú´sea mínima?

Conclusiones
Con la maya se quiere que estemos al corriente de  algunos temas como es las derivadas y ser para  los estudiantes  una guía para un mejor aprendizaje 


GRADO: ONCE

PERIODO: PRIMERO
INTENSIDAD HORARIA : 3 horas semanales

DOCENTE: GUILLERMO LEÓN ROLDÁN SOSA
OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo.
PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?
CONTENIDOS
ESTANDARES
COMPETENCIAS
LOGROS
INDICADORES DE DESEMPEÑO
INSTANCIAS VERIFICADORAS
ACCIONES EVALUATIVAS
FECHAS
Desigualdades e Inecuaciones.
Axiomas de orden en R.
Intervalos.
Propiedades de las desigualdades
Problemas.
VALOR ABSOLUTO.
Definición.
Propiedades.
Ejercicios
FUNCIONES.
Definición.
Funciones básicas
Dominio, Rango
Problemas de la vida.
Pensamiento numérico y sistemas numéricos


Pensamiento variacional y sistemas algebraicos y analíticos



























Formular, plantear, transformar y resolver problemas a partir de situaciones de la vida cotidiana, de las otras ciencias y de las matemáticas mismas.

Utilizar diferentes registros de representación o sistemas de notación simbólica para crear, expresar y representar ideas matemáticas; para utilizar y transformar
dichas representaciones y, con ellas, formular y sustentar puntos de vista
Usar la argumentación, la prueba y la refutación, el ejemplo y el contraejemplo, como medios de validar y rechazar conjeturas, y avanzar en el camino hacia la demostración.

Dominar procedimientos y algoritmos matemáticos y conocer cómo, cuándo y porqué usarlos de manera
flexible y eficaz.
Resolver inecuaciones por el método del cementerio
Y el método analítico.

Resolver ecuaciones e inecuación que contienen valores absolutos.

Aplicar la definición de función a diferentes relaciones.

Resolver problemas que involucran funciones.

Resuelve inecuaciones por el método del cementerio
Y el método analítico.

Resuelve ecuaciones e inecuación que contienen valores absolutos.

Aplica la definición de función a diferentes



Resuelve problemas que involucran funciones.
1. La solución deinecuaciones por el método del cementerio
Y el método analítico.

2. La solución de ecuaciones e inecuación que contienen valores absolutos.

3. La aplicación de la definición de función a diferentes
relaciones

4. La solución a problemas que involucran funciones.



El valor y el respeto al trabajo y la participación del otro, en todos los ámbitos académicos y de convivencia.


Evaluación escrita



Evaluación escrita



Evaluación escrita


Evaluación escrita







.
Semana 4



Semana 5



Semana 6


Semana 8




GRADO: ONCE


PERIODO: SEGUNDO


INTENSIDAD HORARIA : 3 horas semanales

DOCENTE: GUILLERMO LEÓN ROLDÁN SOSA
OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo.
PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?
CONTENIDOS
ESTANDARES
COMPETENCIAS
LOGROS
INDICADORES DE DESEMPEÑO
INSTANCIAS VERIFICADORAS
ACCIONES EVALUATIVAS
FECHAS
Transformación de funciones.
Desplazamientos
Verticales.
Desplazamiento horizontal.
Reflexión.
Estiramiento y acortamiento vertical.
Acortamiento y alargamiento horizontal.
Función par e impar.
Dominio, Rango.
Interceptos.
Función uno a uno
Y sobre.
Función Inyectiva.
Función Inversa.
Pensamiento numérico y sistemas numéricos


Pensamiento variacional y sistemas algebraicos y analíticos


























Formular, plantear, transformar y resolver problemas a partir de situaciones de la vida cotidiana, de las otras ciencias y de las matemáticas mismas.

Utilizar diferentes registros de representación o sistemas de notación simbólica para crear, expresar y representar ideas matemáticas; para utilizar y transformar
dichas representaciones y, con ellas, formular y sustentar puntos de vista
Usar la argumentación, la prueba y la refutación, el ejemplo y el contraejemplo, como medios de validar y rechazar conjeturas, y avanzar en el camino hacia la demostración.

Dominar procedimientos y algoritmos matemáticos y conocer cómo, cuándo y porqué usarlos de manera
flexible y eficaz.
Graficar funciones partiendo de funciones básicas, empleando los conceptos de traslación, estiramiento, encogimiento y reflexión.

Determinar el Dominio, el Rango y los intersectos de una función.


Identificar, clasificar una función en par o impar.

Identificar si una función tiene inversa y calcularla.
Grafica funciones partiendo de funciones básicas, empleando los conceptos de traslación, estiramiento, encogimiento y reflexión.



Determina el Dominio, el Rango y los intersectos de una función.


Identifica, clasifica una función en par o impar.


Identifica si una función tiene inversa y la calcula






1. La gráfica de una función usando funciones básicas, desplazamientos verticales y horizontales.
2. La gráfica de una función usando funciones básicas, alargamientos y reflexiones verticales y horizontales
3. El cálculo del Dominio, Rango, Interceptos.

4. La determinación si la gráfica de una FUNCIÓN es inyectiva y, si por lo tanto tiene
Inversa.

.

El valor y el respeto al trabajo y la participación del otro, en todos los ámbitos académicos y de convivencia.

Evaluación escrita



Evaluación escrita



Evaluación escrita



Evaluación escrita







.
Semana 4



Semana 5



Semana 6


Semana 8

RECURSOS PEDAGOGICOS
Ordenadores, programas o proyectos virtuales como DESCARTES y GEOGEBRA, DVD’, sala de informática, Internet, libros virtuales, papel cuadriculado, lápiz, reglas, escuadras, libros , fotocopias, borradores, tizas, marcadores, GRUPO GALOIS.





GRADO: ONCE

PERIODO: TERCERO





INTENSIDAD HORARIA : 3 horas semanales

DOCENTE: GUILLERMO LEÓN ROLDÁN SOSA
OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo.
PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?


CONTENIDOS
ESTANDARES
COMPETENCIAS
LOGROS
INDICADORES DE DESEMPEÑO
INSTANCIAS VERIFICADORAS
ACCIONES EVALUATIVAS
FECHAS
LIMITES.
Definición, ejemplos, ejercicios
Continuidad,
Teorema del valor intermedio.
DERIVADA.
Recta tangente y normal a una curva.
Velocidad instantánea.
Definición de Derivada.
Reglas de derivación.
Regla de la cadena
Derivada implícita.
Pensamiento numérico y sistemas numéricos


Pensamiento variacional y sistemas algebraicos y analíticos


























Formular, plantear, transformar y resolver problemas a partir de situaciones de la vida cotidiana, de las otras ciencias y de las matemáticas mismas.

Utilizar diferentes registros de representación o sistemas de notación simbólica para crear, expresar y representar ideas matemáticas; para utilizar y transformar
dichas representaciones y, con ellas, formular y sustentar puntos de vista
Usar la argumentación, la prueba y la refutación, el ejemplo y el contraejemplo, como medios de validar y rechazar conjeturas, y avanzar en el camino hacia la demostración.

Dominar procedimientos y algoritmos matemáticos y conocer cómo, cuándo y porqué usarlos de manera
flexible y eficaz.
Calcular límites cuando la variable tiende a un valor finito.


Eliminar indeterminaciones
de la forma 0/0.

Determinar la continuidad de una función.

Calcular la derivada de funciones.
Calcula límites cuando la variable tiende a un valor finito.

Elimina indeterminaciones
de la forma 0/0.

Determina la continuidad de una función.


Calcula la derivada de funciones.


1. El cálculo delímites cuando la variable tiende a un valor finito.

2. La eliminación de indeterminaciones de la forma 0/0.

3. La determinación de la continuidad o no de una función.

4. El calcular la derivada de una función real.

.

El valor y el respeto al trabajo y la participación del otro, en todos los ámbitos académicos y de convivencia.


Evaluación escrita


Evaluación escrita

Evaluación escrita



Evaluación escrita







.
Semana 4


Semana 5

Semana 6


Semana 8

RECURSOS PEDAGOGICOS
Ordenadores, programas o proyectos virtuales como DESCARTES y GEOGEBRA, DVD’, sala de informática, Internet, libros virtuales, papel cuadriculado, lápiz, reglas, escuadras, libros , fotocopias, borradores, tizas, marcadores, GRUPO GALOIS.
GRADO: ONCE

PERIODO: CUARTO
INTENSIDAD HORARIA : 3 horas semanales

DOCENTE: GUILLERMO LEÓN ROLDÁN SOSA
OBJETIVO DE GRADO:
Estudiar funciones de variable real, límites y derivadas, como conceptos básicos para resolver problemas de la vida, que involucren minimizar o maximizar cantidades, costos, áreas, tiempo.
PREGUNTA PROBLEMATIZADORA:

¿CUÁLES DEBEN SER LAS DIMENSIONES ÓPTIMAS PARA QUE EL COSTO DEL MATERIAL EMPLEADO EN UNA LATA DE CERVEZA, COCACOLA O ATÚN SEA MINIMO?
CONTENIDOS
ESTANDARES
COMPETENCIAS
LOGROS
INDICADORES DE DESEMPEÑO
INSTANCIAS VERIFICADORAS
ACCIONES EVALUATIVAS
FECHAS
APLICACIONES
DE LA DERIVADA.
Máximos y mínimos relativos y absolutos.
Números críticos.
Teorema del valor medio y el valor extremo.
Criterios de la primera y segunda derivada
Concavidad.

Problemas de OPTIMIZACIÖN.
Pensamiento numérico y sistemas numéricos


Pensamiento variacional y sistemas algebraicos y analíticos


























Formular, plantear, transformar y resolver problemas a partir de situaciones de la vida cotidiana, de las otras ciencias y de las matemáticas mismas.

Utilizar diferentes registros de representación o sistemas de notación simbólica para crear, expresar y representar ideas matemáticas; para utilizar y transformar
dichas representaciones y, con ellas, formular y sustentar puntos de vista
Usar la argumentación, la prueba y la refutación, el ejemplo y el contraejemplo, como medios de validar y rechazar conjeturas, y avanzar en el camino hacia la demostración.

Dominar procedimientos y algoritmos matemáticos y conocer cómo, cuándo y porqué usarlos de manera
flexible y eficaz.
Hallar máximos y mínimos relativos y absolutos de una función.

Obtener valores críticos de una función.

Determinar intervalos de crecimiento y decrecimiento.

Determinar concavidad.

Resolver problemas de Optimización

Halla máximos y mínimos relativos y absolutos de una función.

Obtiene valores críticos de una función.

Determina intervalos de crecimiento y decrecimiento.

Determina concavidad.

Resuelve problemas de Optimización








1. Los máximos y mínimos relativos y absolutos de una función.

2. Los valores críticos de una función.

3. Los intervalos de crecimiento y decrecimiento. La
Determinación de la concavidad.

4. La solución de problemas de Optimización





El valor y el respeto al trabajo y la participación del otro, en todos los ámbitos académicos y de convivencia.


Evaluación escrita

Evaluación escrita

Evaluación escrita

Evaluación escrita







.
Semana 4

Semana 5

Semana 6

Semana 8

RECURSOS PEDAGOGICOS
Ordenadores, programas o proyectos virtuales como DESCARTES y GEOGEBRA, DVD’, sala de informática, Internet, libros virtuales, papel cuadriculado, lápiz, reglas, escuadras, libros , fotocopias, borradores, tizas, marcadores, GRUPO GALOIS.


Con esta malla y todos los módulos  nos podremos vasar para dar soluciones algunos problemas que se nos presenta cada día.